2010 年,中国航空无线电电子研究所已在系统性地预先研究基础上,提出一种基于RFID 技术应用的自动化配载和平衡系统的技术解决方案,同年,申请国家发明专利。2011 年,在这个国家发明专利的基础上,中国航空无线电电子研究所正在研究进一步如何构建一种基于空地信息交互的、自动化机场信息处理系统。
有别于其他现有系统的不同在于,我们的系统不仅支持地面准备阶段的高效率、自动化配载,还能够直接支持机载飞行管理系统精确优化计算所需要的飞机商载重量和中心数据,从而,为飞行、机场协调和空中交通管理人员提供优化的运行保障手段。
系统构型如图1 所示。
图1 系统构型
该系统的组成包括:机场值机系统、空地数据链、RFID 配载工作站和机载飞行管理系统。
图中,机场值机系统包括人工值机岛和自助机,物流管理系统提供货物装载数据,数据链路为电子舱单提供输出渠道,也包括及时传递临时变动的配置数据,诸如办理登机牌后的旅客未到等情况。
RFID 配载工作站包括满足适航要求的配载和平衡程序,该程序依据适航规则和民航的安全运行规章,实现配载管理,并计算相应的重心,其输出为典型的电子舱单;工作站还包括根据机型配置的机型数据库,包括2D 和3D的虚拟机型布置;工作站还配置了与相关机型相等的飞行管理系统程序,该程序用于校验优化性能计算的需求。用户端包括飞行机组、航空公司和机场及地面运行人员。
系统的典型工作流程如图2 所示:
图2 系统典型工作流程
在数据采集阶段,主要是通过机场的值机系统,获得旅客及物品的RFID 信息,包括旅客座位和行李重量数据;同时,通过物流部门的RFID 信息,获得货物的重量和物品性质信息。
通过数据链系统,传递旅客和物品临时变动信息。
在信息处理阶段,重量和平衡配置人员可选择手工配置方式,根据公司操作规程和自身经验,进行重量与平衡的配置;也可选择自动化的配置方式,即由RFID 配载工作站进行自动化的配置。
在配置检验阶段,RFID 工作站显示2D 或3D 的、具体机型舱位和重心计算结果。通过观察这些显示信息,工作人员根据公司规章和自身经验,在屏幕上进行虚拟调整,取得最佳舱位空间使用及重心配置的优化结果。
取决于航空公司的运营模式,可在飞行签派、公司航务、飞行准备以及驾驶舱的各种显示终端上显示这些优化配置结果,由工作人员和飞行人员进行飞行管理系统的优化性能预算,并进行抉择,据此得出飞行计划中的性能控制指标。
在信息输出阶段,通过数据链系统传递电子舱单,或为飞行管理系统提供性能初始化所需相关重量和重心数据。